Cd-induced cytosolic proteome changes in the cyanobacterium Anabaena sp. PCC7120 are mediated by LexA as one of the regulatory proteins

Biochim Biophys Acta Proteins Proteom. 2023 May 1;1871(3):140902. doi: 10.1016/j.bbapap.2023.140902. Epub 2023 Jan 27.

Abstract

LexA, a well-characterized transcriptional repressor of SOS genes in heterotrophic bacteria, has been shown to regulate diverse genes in cyanobacteria. An earlier study showed that LexA overexpression in a cyanobacterium, Anabaena sp. PCC7120 reduces its tolerance to Cd stress. This was later shown to be due to modulation of photosynthetic redox poising by LexA under Cd stress. However, due to the global regulatory nature of LexA and the prior prediction of AnLexA-box in a few heavy metal-responsive genes, we speculated that LexA has a broad role in Cd tolerance, with regulation over a variety of Cd stress-responsive genes in addition to photosynthetic genes. Thus, to further expand the knowledge on the regulatory role of LexA in Cd stress tolerance, a cytosolic proteome profiling of Anabaena constitutively overexpressing LexA upon Cd stress was performed. The proteomic study revealed 25 differentially accumulated proteins (DAPs) in response to the combined effect of LexA overexpression and Cd stress, and the other 11 DAPs exclusively in response to either LexA overexpression or Cd stress. The 36 identified proteins were related with a variety of functions, including photosynthesis, C-metabolism, antioxidants, protein turnover, post-transcriptional modifications, and a few unknown and hypothetical proteins. The regulation of LexA on corresponding genes, and six previously reported Cd efflux transporters, was further validated by the presence of AnLexA-boxes, transcript, and/or promoter analyses. In a nutshell, this study identifies the regulation of Anabaena LexA on several Cd stress-responsive genes of various functions, hence expanding the regulatory role of LexA under Cd stress.

Keywords: Electrophoretic mobility shift assay; LexA; Mass spectrometry; Real-time quantitative PCR; Transcription regulation; Two-dimensional gel electrophoresis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anabaena* / genetics
  • Anabaena* / metabolism
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Cadmium / metabolism
  • Cyanobacteria* / metabolism
  • Proteome / metabolism
  • Proteomics
  • Transcription Factors / metabolism

Substances

  • Proteome
  • Cadmium
  • Bacterial Proteins
  • Transcription Factors