Efficient generation of marmoset primordial germ cell-like cells using induced pluripotent stem cells

Elife. 2023 Jan 31:12:e82263. doi: 10.7554/eLife.82263.

Abstract

Reconstitution of germ cell fate from pluripotent stem cells provides an opportunity to understand the molecular underpinnings of germ cell development. Here, we established robust methods for induced pluripotent stem cell (iPSC) culture in the common marmoset (Callithrix jacchus [cj]), allowing stable propagation in an undifferentiated state. Notably, iPSCs cultured on a feeder layer in the presence of a WNT signaling inhibitor upregulated genes related to ubiquitin-dependent protein catabolic processes and enter a permissive state that enables differentiation into primordial germ cell-like cells (PGCLCs) bearing immunophenotypic and transcriptomic similarities to pre-migratory cjPGCs in vivo. Induction of cjPGCLCs is accompanied by transient upregulation of mesodermal genes, culminating in the establishment of a primate-specific germline transcriptional network. Moreover, cjPGCLCs can be expanded in monolayer while retaining the germline state. Upon co-culture with mouse testicular somatic cells, these cells acquire an early prospermatogonia-like phenotype. Our findings provide a framework for understanding and reconstituting marmoset germ cell development in vitro, thus providing a comparative tool and foundation for a preclinical modeling of human in vitro gametogenesis.

Keywords: developmental biology; in vitro gametogenesis; marmoset; primordial germ cell; primordial germ cell-like cell; regenerative medicine; stem cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Callithrix
  • Cell Differentiation
  • Germ Cells / metabolism
  • Humans
  • Induced Pluripotent Stem Cells* / metabolism
  • Mice
  • Pluripotent Stem Cells* / metabolism

Associated data

  • GEO/GSE209932