Wireless body area network (WBAN) is widely adopted in healthcare services, providing remote real-time and continuous healthcare monitoring. With the massive increase of detective sensor data, WBAN is largely restricted by limited storage and computation capacity, resulting in severely decreased efficiency and reliability. Mobile edge computing (MEC) technique can be combined with WBAN to resolve this issue. This paper studies the joint optimization problem of computational offloading and resource allocation (JCORA) in MEC for healthcare service scenarios. We formulate JCORA as a Markov decision process and propose a deep deterministic policy gradient-based WBAN offloading strategy (DDPG-WOS) to optimize time delay and energy consumption in interfered transmission channels. This scheme employs MEC to mitigate the computation pressure on a single WBAN and increase the transmission ability. Further, DDPG-WOS optimizes the offloading strategy-making process by considering the channel condition, transmission quality, computation ability and energy consumption. Simulation results verify the effectiveness of the proposed optimization schema in reducing energy consumption and computation latency and increasing the utility of WBAN compared to two competitive solutions.
Keywords: Deep reinforcement learning; Mobile edge computing; Offloading policy; Wireless body area networks.
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.