Individual Differences in Corticostriatal White-matter Tracts Predict Successful Daily-life Routine Formation

J Cogn Neurosci. 2023 Apr 1;35(4):571-587. doi: 10.1162/jocn_a_01967.

Abstract

Despite good intentions, people often fail to cross the "intention-behavior gap," especially when goal achievement requires repeated action. To bridge this gap, the formation of automatized routines may be crucial. However, people may differ in the tendency to switch from goal-directed toward habitual control. To shed light on why some people succeed in forming routines while others struggle, the present study related the automatization of a novel, daily routine to individual differences in white-matter connectivity in corticostriatal networks that have been implicated in goal-directed and habitual control. Seventy-seven participants underwent diffusion-weighted imaging and formed the daily routine of taking a (placebo) pill for 3 weeks. Pill intake was measured by electronic pill boxes, and participants filled out a daily online questionnaire on the subjective automaticity of this behavior. Automatization of pill intake was negatively related to striatal (mainly caudate) connectivity with frontal goal-directed and cognitive control regions, namely, ventromedial pFC and anterior cingulate gyrus. Furthermore, daily pill intake was positively related to individual differences in striatal (mainly caudate) connectivity with cognitive control regions, including dorsolateral and anterior pFC. Therefore, strong control networks may be relevant for implementing a new routine but may not benefit its automatization. We also show that habit tendency (assessed with an outcome-devaluation task), conscientiousness, and daily life regularity were positively related to routine automatization. This translational study moves the field of habit research forward by relating self-reported routine automatization to individual differences in performance on an experimental habit measure and to brain connectivity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain*
  • Corpus Striatum / diagnostic imaging
  • Gyrus Cinguli
  • Humans
  • Individuality*
  • Motivation