Estimation of cell lineages in tumors from spatial transcriptomics data
- PMID: 36732531
- PMCID: PMC9895078
- DOI: 10.1038/s41467-023-36062-6
Estimation of cell lineages in tumors from spatial transcriptomics data
Abstract
Spatial transcriptomics (ST) technology through in situ capturing has enabled topographical gene expression profiling of tumor tissues. However, each capturing spot may contain diverse immune and malignant cells, with different cell densities across tissue regions. Cell type deconvolution in tumor ST data remains challenging for existing methods designed to decompose general ST or bulk tumor data. We develop the Spatial Cellular Estimator for Tumors (SpaCET) to infer cell identities from tumor ST data. SpaCET first estimates cancer cell abundance by integrating a gene pattern dictionary of copy number alterations and expression changes in common malignancies. A constrained regression model then calibrates local cell densities and determines immune and stromal cell lineage fractions. SpaCET provides higher accuracy than existing methods based on simulation and real ST data with matched double-blind histopathology annotations as ground truth. Further, coupling cell fractions with ligand-receptor coexpression analysis, SpaCET reveals how intercellular interactions at the tumor-immune interface promote cancer progression.
© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
SpatialcoGCN: deconvolution and spatial information-aware simulation of spatial transcriptomics data via deep graph co-embedding.Brief Bioinform. 2024 Mar 27;25(3):bbae130. doi: 10.1093/bib/bbae130. Brief Bioinform. 2024. PMID: 38557675 Free PMC article.
-
Integrating spatial transcriptomics and bulk RNA-seq: predicting gene expression with enhanced resolution through graph attention networks.Brief Bioinform. 2024 May 23;25(4):bbae316. doi: 10.1093/bib/bbae316. Brief Bioinform. 2024. PMID: 38960406 Free PMC article.
-
METI: deep profiling of tumor ecosystems by integrating cell morphology and spatial transcriptomics.Nat Commun. 2024 Aug 25;15(1):7312. doi: 10.1038/s41467-024-51708-9. Nat Commun. 2024. PMID: 39181865 Free PMC article.
-
A comprehensive comparison on cell-type composition inference for spatial transcriptomics data.Brief Bioinform. 2022 Jul 18;23(4):bbac245. doi: 10.1093/bib/bbac245. Brief Bioinform. 2022. PMID: 35753702 Free PMC article. Review.
-
Computational solutions for spatial transcriptomics.Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022. Comput Struct Biotechnol J. 2022. PMID: 36147664 Free PMC article. Review.
Cited by
-
The diversification of methods for studying cell-cell interactions and communication.Nat Rev Genet. 2024 Jun;25(6):381-400. doi: 10.1038/s41576-023-00685-8. Epub 2024 Jan 18. Nat Rev Genet. 2024. PMID: 38238518 Review.
-
Deciphering transcriptomic determinants of the divergent link between PD-L1 and immunotherapy efficacy.NPJ Precis Oncol. 2023 Sep 11;7(1):87. doi: 10.1038/s41698-023-00443-3. NPJ Precis Oncol. 2023. PMID: 37696887 Free PMC article.
-
Spatial transcriptomics in development and disease.Mol Biomed. 2023 Oct 9;4(1):32. doi: 10.1186/s43556-023-00144-0. Mol Biomed. 2023. PMID: 37806992 Free PMC article. Review.
-
Spatial transcriptomics and single-nucleus RNA sequencing reveal a transcriptomic atlas of adult human spinal cord.Elife. 2024 Jan 30;12:RP92046. doi: 10.7554/eLife.92046. Elife. 2024. PMID: 38289829 Free PMC article.
-
Molecular signature incorporating the immune microenvironment enhances thyroid cancer outcome prediction.Cell Genom. 2023 Sep 14;3(10):100409. doi: 10.1016/j.xgen.2023.100409. eCollection 2023 Oct 11. Cell Genom. 2023. PMID: 37868034 Free PMC article.
References
-
- Crosetto N, Bienko M, van Oudenaarden A. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 2015;16:57–66. - PubMed
-
- Asp M, Bergenstråhle J, Lundeberg J. Spatially resolved transcriptomes—next generation tools for tissue exploration. Bioessays. 2020;42:e1900221. - PubMed
-
- 10x Genomics. https://support.10xgenomics.com/spatial-gene-expression/.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
