Prognostic value and therapeutic targeting of XPO1 in chronic lymphocytic leukemia

Clin Exp Med. 2023 Oct;23(6):2651-2662. doi: 10.1007/s10238-023-01003-6. Epub 2023 Feb 4.

Abstract

Chronic lymphocytic leukemia (CLL) is a subtype of B-cell malignancy with high heterogeneity. XPO1 is highly expressed in many hematological malignancies, which predicts poor prognosis. In the study, we aimed to explore the prognostic role of XPO1 and the therapeutic effect of Selinexor, a selective inhibitor of nuclear export, which targets XPO1. We collected 200 CLL samples in our center to confirm XPO1 mRNA expression and analyzed the correlation between XPO1 expression and prognosis. Then, we decreased XPO1 expression with Selinexor to explore the effect of proliferation inhibition, cell cycle arrest, and apoptosis in CLL cell lines. RNA-Seq was performed to explore potential mechanisms. We analyzed XPO1 expression in a cohort of 150 treatment naive patients and another cohort of 50 relapsed and refractory (R/R) patients and found that XPO1 expression was upregulated in 76% of CLL patients compared with healthy donors. Survival analysis suggested that patients with increased XPO1 expression had inferior treatment-free survival (P = 0.022) and overall survival (P = 0.032). The inhibitor of XPO1, Selinexor, induced apoptosis in primary CLL cells. We showed the effects of Selinexor on proliferation inhibition, cell cycle arrest, and apoptosis in CLL cell lines with JVM3, MEC1, and ibrutinib-resistant (MR) cells via nuclear retention of cargo proteins of IκBα, p65, p50, and FOXO3a. Moreover, downregulation of the NF-κB and FOXO pathways was a common feature of the three CLL cell lines responding to Selinexor, indicating the potential application of XPO1 inhibitor even in the high-risk CLL cells. We identified XPO1 as an unfavorable prognostic factor for CLL patients and provided a rationale for further investigation of the clinically XPO1 targeted therapeutic strategy against CLL.

Keywords: Chronic lymphocytic leukemia; FOXO; NF-κB; Nuclear retention; Prognosis; XPO1.

MeSH terms

  • Apoptosis
  • Cell Line, Tumor
  • Humans
  • Karyopherins / genetics
  • Karyopherins / metabolism
  • Leukemia, Lymphocytic, Chronic, B-Cell* / drug therapy
  • Leukemia, Lymphocytic, Chronic, B-Cell* / pathology
  • Prognosis
  • Triazoles / pharmacology
  • Triazoles / therapeutic use

Substances

  • selinexor
  • Karyopherins
  • Triazoles