Remote Ischemic Conditioning Mediates Cardio-protection After Myocardial Ischemia/Reperfusion Injury by Reducing 4-HNE Levels and Regulating Autophagy via the ALDH2/SIRT3/HIF1α Signaling Pathway

J Cardiovasc Transl Res. 2024 Feb;17(1):169-182. doi: 10.1007/s12265-023-10355-z. Epub 2023 Feb 6.

Abstract

Remote ischemic conditioning (RIC) can be effectively applied for cardio-protection. Here, to clarify whether RIC exerts myocardial protection via aldehyde dehydrogenase 2 (ALDH2), we established a myocardial ischemia/reperfusion (I/R) model in C57BL/6 and ALDH2 knockout (ALDH2-KO) mice and treated them with RIC. Echocardiography and single-cell contraction experiments showed that RIC significantly improved myocardial function and alleviated I/R injury in C57BL/6 mice but did not exhibit its cardioprotective effects in ALDH2-KO mice. TUNEL, Evan's blue/triphenyl tetrazolium chloride, and reactive oxygen species (ROS) assays showed that RIC's effect on reducing myocardial cell apoptosis, myocardial infarction area, and ROS levels was insignificant in ALDH2-KO mice. Our results showed that RIC could increase ALDH2 protein levels, activate sirtuin 3 (SIRT3)/hypoxia-inducible factor 1-alpha (HIF1α), inhibit autophagy, and exert myocardial protection. This study revealed that RIC could exert myocardial protection via the ALDH2/SIRT3/HIF1α signaling pathway by reducing 4-HNE secretion.

Keywords: Aldehyde dehydrogenase 2; Hypoxia-inducible factor 1-alpha; Ischemia/reperfusion injury; Remote ischemic conditioning; Sirtuin 3.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aldehyde Dehydrogenase, Mitochondrial / genetics
  • Aldehyde Dehydrogenase, Mitochondrial / metabolism
  • Animals
  • Autophagy
  • Mice
  • Mice, Inbred C57BL
  • Myocardial Reperfusion Injury* / genetics
  • Myocardial Reperfusion Injury* / metabolism
  • Myocardial Reperfusion Injury* / prevention & control
  • Reactive Oxygen Species / metabolism
  • Signal Transduction
  • Sirtuin 3* / genetics
  • Sirtuin 3* / metabolism

Substances

  • Sirtuin 3
  • Aldehyde Dehydrogenase, Mitochondrial
  • Reactive Oxygen Species
  • ALDH2 protein, mouse