Metal working process is one of the main activities in mechanical manufacturing industry; it is considered as a major consumer of energy and natural resources. In material removal process, the selection of cutting parameters and cooling or cutting liquid is necessary to save energy and achieve energy efficiency as well as sustainability. During the last two decades, the number of publications in this field has rapidly increased and has shown the importance of this research area. This review paper identifies and reviews in detail a total of 166 scientific studies which exhibit original contributions to the field and address multiple energy efficiency challenges. The recently developed models of energy consumption and different materials used in the machining process are presented. Therefore, this study describes various techniques for modeling and optimizing machining operations such as turning, milling, and drilling. Modeling techniques, experimental methods, multi-objective and single-objective optimization methods, and hybrid techniques optimization are presented in a detailed manner compared to previous review papers where only energy models are discussed. It can help practitioners and researchers to select the most appropriate approach for the desired experience and to highlight the progress of these methods in terms of machining energy efficiency. Additionally, this paper provides a review of different cutting fluids adopted in machining processes. This paper assists researchers and manufacturers in making advantageous technical decisions that have substantial economics in terms of energy saving.
Keywords: Cutting metals; Cutting parameters; Energy efficiency; Lubrication; Machine tool; Optimization methods.
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.