A room of errors simulation to improve pharmacy operators' knowledge of cytotoxic drug production

J Oncol Pharm Pract. 2023 Dec;29(8):1868-1877. doi: 10.1177/10781552231152145. Epub 2023 Feb 7.

Abstract

Introduction: We used an educational healthcare simulation tool called room of errors (ROE) to raise pharmacy operators' awareness of potential errors in a chemotherapy production process and assessed its impact on their knowledge and satisfaction.

Methods: Twenty-five errors (compiled from internal procedures, literature and our hospital's reported incidents) were categorised as static (n = 7, visible by the participant anytime) and dynamic (n = 18, made by a pseudooperator in front of the participant). Our simulated cytotoxic production unit (CPU) hosted the 1 h-simulation. Two pharmacists (supervisor/pseudo-operator) welcomed the trainee for a 10-min briefing. During the 20-min simulation, participants watched the pseudo-operator's gestures in a simulated chemotherapy production process. Participants called out each error observed (recorded by the supervisor). A 20-min debriefing followed. ROE's impact on knowledge was measured through participants' answers to a before-and after 18-item questionnaire about CPU's procedures and certainty about answers on a scale (0%-100%). Participants evaluated the training using a satisfaction questionnaire (Likert scale, 1-6).

Results: The 14 participants detected 70.4% ± 11.4% of errors. Least-detected errors were "using non-disinfected vials" (42.9%) and "touching syringe plunger" (0%). Critical errors (expired leftovers or glucose instead of sodium chloride) were detected at 57.1%. Knowledge improved from 60.3% to 94.1% (p < 0.001) and certainty from 75.3% to 98.8% (p < 0.001). Participants appreciated this non-judgmental, informative, and original training (satisfaction 95.7%). Some pointed out difficulties settling into the game quickly and visualising static and dynamic errors simultaneously.

Conclusion: This ROE simulation improved operators' knowledge and certainty. Longer-term testing should be done to measure knowledge retention over time.

Keywords: chemotherapy; errors; knowledge assessment; pharmaceutical training; simulation.

MeSH terms

  • Antineoplastic Agents*
  • Humans
  • Medication Errors / prevention & control
  • Pharmaceutical Services*
  • Pharmacies*
  • Pharmacists
  • Pharmacy*

Substances

  • Antineoplastic Agents