For the first 18 months of the COVID-19 pandemic, New Zealand used an elimination strategy to suppress community transmission of SARS-CoV-2 to zero or very low levels. In late 2021, high vaccine coverage enabled the country to transition away from the elimination strategy to a mitigation strategy. However, given negligible levels of immunity from prior infection, this required careful planning and an effective public health response to avoid uncontrolled outbreaks and unmanageable health impacts. Here, we develop an age-structured model for the Delta variant of SARS-CoV-2 including the effects of vaccination, case isolation, contact tracing, border controls and population-wide control measures. We use this model to investigate how epidemic trajectories may respond to different control strategies, and to explore trade-offs between restrictions in the community and restrictions at the border. We find that a low case tolerance strategy, with a quick change to stricter public health measures in response to increasing cases, reduced the health burden by a factor of three relative to a high tolerance strategy, but almost tripled the time spent in national lockdowns. Increasing the number of border arrivals was found to have a negligible effect on health burden once high vaccination rates were achieved and community transmission was widespread.
Keywords: COVID-19; Delta; border restrictions; lockdown; public health; vaccination.
© 2023 The Authors.