Evaluating evasion strategies in zebrafish larvae

Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2218909120. doi: 10.1073/pnas.2218909120. Epub 2023 Feb 9.

Abstract

An effective evasion strategy allows prey to survive encounters with predators. Prey are generally thought to escape in a direction that is either random or serves to maximize the minimum distance from the predator. Here, we introduce a comprehensive approach to determine the most likely evasion strategy among multiple hypotheses and the role of biomechanical constraints on the escape response of prey fish. Through a consideration of six strategies with sensorimotor noise and previous kinematic measurements, our analysis shows that zebrafish larvae generally escape in a direction orthogonal to the predator's heading. By sensing only the predator's heading, this orthogonal strategy maximizes the distance from fast-moving predators, and, when operating within the biomechanical constraints of the escape response, it provides the best predictions of prey behavior among all alternatives. This work demonstrates a framework for resolving the strategic basis of evasion in predator-prey interactions, which could be applied to a broad diversity of animals.

Keywords: fish C-start; fluid–structure interactions; hydrodynamics; predator–prey interactions; probabilistic modeling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Escape Reaction
  • Larva / physiology
  • Predatory Behavior* / physiology
  • Zebrafish* / physiology