Unraveling the over-oxidation inhibition mechanism during the hybrid ozonation-coagulation process: Immediate entrapment and complexation between intermediate organic matter and coagulants

Water Res. 2023 Apr 1:232:119692. doi: 10.1016/j.watres.2023.119692. Epub 2023 Feb 3.

Abstract

Pre-ozonation coagulation process had a very low and narrow range of ozone dosages for enhancing the dissolved organic matter (DOC) removal efficiency, in which over-oxidation may occur if the ozone dosage was not strictly controlled. In contrast, the proposed hybrid ozonation-coagulation (HOC) process with higher oxidation ability notably inhibited over-oxidation in this study, and exhibited improved DOC removal efficiency compared with coagulation at a much wider range of ozone dosages at different initial pH for the treatment of WWTP effluent. The HOC process also had a higher DOC removal efficiency than pre-ozonation coagulation. According to zeta potential analysis, a rising trend indicated that complexation between organic matter and metal coagulants persisted throughout the HOC process. However, the zeta potential remained almost unchanged during subsequent coagulation after pre-ozonation at high ozone dosages. Synchronous fluorescence spectroscopy analysis revealed that immediate entrapment and complexation between hydrolysed coagulants and oxidized intermediate organic matter occurred in the HOC process. Furthermore, FT-IR analysis showed that more oxygen-containing functional groups were generated, which were effectively trapped by metal coagulants and readily flocculated. To further prove the immediate entrapment and complexation during the HOC process, UPLC-Q-TOF-MS was applied to analyze the intermediate organic matter in the supernatant and flocs. The results implied that C21- organic matter was oxidized and decomposed into C11-C20, and C11-C20 intermediate organic matter was trapped and complexed by metal coagulants once formed, which led to the increase of C11-C20 in the flocs. Nevertheless, the catalytic ozonation process (γ-Al2O3/O3) with the same oxidation ability as the HOC process decomposed the organic matter into C1-C10. XPS analysis further confirmed the immediate entrapment and removal of aliphatic/aromatic carbon and oxygen-containing functional groups during the HOC process. Therefore, over-oxidation can be effectively inhibited, and wide range of ozone dosages was obtained during the HOC process, which facilitate the application of the HOC process.

Keywords: Hybrid ozonation-coagulation process; Immediate complexation; Intermediate organic matter; Over-oxidation.

MeSH terms

  • Oxidation-Reduction
  • Ozone* / chemistry
  • Spectroscopy, Fourier Transform Infrared
  • Water Pollutants, Chemical* / chemistry
  • Water Purification* / methods

Substances

  • Water Pollutants, Chemical
  • Ozone