Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar 19;24(2):bbad039.
doi: 10.1093/bib/bbad039.

Improved inter-protein contact prediction using dimensional hybrid residual networks and protein language models

Affiliations

Improved inter-protein contact prediction using dimensional hybrid residual networks and protein language models

Yunda Si et al. Brief Bioinform. .

Abstract

The knowledge of contacting residue pairs between interacting proteins is very useful for the structural characterization of protein-protein interactions (PPIs). However, accurately identifying the tens of contacting ones from hundreds of thousands of inter-protein residue pairs is extremely challenging, and performances of the state-of-the-art inter-protein contact prediction methods are still quite limited. In this study, we developed a deep learning method for inter-protein contact prediction, which is referred to as DRN-1D2D_Inter. Specifically, we employed pretrained protein language models to generate structural information-enriched input features to residual networks formed by dimensional hybrid residual blocks to perform inter-protein contact prediction. Extensively bechmarking DRN-1D2D_Inter on multiple datasets, including both heteromeric PPIs and homomeric PPIs, we show DRN-1D2D_Inter consistently and significantly outperformed two state-of-the-art inter-protein contact prediction methods, including GLINTER and DeepHomo, although both the latter two methods leveraged the native structures of interacting proteins in the prediction, and DRN-1D2D_Inter made the prediction purely from sequences. We further show that applying the predicted contacts as constraints for protein-protein docking can significantly improve its performance for protein complex structure prediction.

Keywords: contact prediction; deep learning; protein language models; protein–protein interactions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources