Intron dynamics reveal principles of gene regulation during the maternal-to-zygotic transition

RNA. 2023 May;29(5):596-608. doi: 10.1261/rna.079168.122. Epub 2023 Feb 10.

Abstract

The maternal-to-zygotic transition (MZT) is a conserved embryonic process in animals where developmental control shifts from the maternal to zygotic genome. A key step in this transition is zygotic transcription, and deciphering the MZT requires classifying newly transcribed genes. However, due to current technological limitations, this starting point remains a challenge for studying many species. Here, we present an alternative approach that characterizes transcriptome changes based solely on RNA-seq data. By combining intron-mapping reads and transcript-level quantification, we characterized transcriptome dynamics during the Drosophila melanogaster MZT. Our approach provides an accessible platform to investigate transcriptome dynamics that can be applied to the MZT in nonmodel organisms. In addition to classifying zygotically transcribed genes, our analysis revealed that over 300 genes express different maternal and zygotic transcript isoforms due to alternative splicing, polyadenylation, and promoter usage. The vast majority of these zygotic isoforms have the potential to be subject to different regulatory control, and over two-thirds encode different proteins. Thus, our analysis reveals an additional layer of regulation during the MZT, where new zygotic transcripts can generate additional proteome diversity.

Keywords: gene regulation; intron-mapping reads; maternal-to-zygotic transition.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Drosophila melanogaster* / metabolism
  • Embryonic Development / genetics
  • Gene Expression Regulation, Developmental*
  • Introns / genetics
  • Transcriptome / genetics
  • Zygote