Probiotic Whey-Based Beverages from Cow, Sheep and Goat Milk: Antioxidant Activity, Culture Viability, Amino Acid Contents

Foods. 2023 Feb 1;12(3):610. doi: 10.3390/foods12030610.

Abstract

Recently, the demand for goat and sheep cheese has increased mainly because of its nutritional and health benefits. As a result, an enormous amount of whey from various animal species is produced as a waste/by-product. The production of functional probiotic fermented beverages from different types of whey protein concentrates (WPC) could be a good way to valorize whey. Meanwhile, reduced environmental pollution and economic sustainability will be provided. In this study, probiotic beverages enriched with 1% kiwi powder were produced from goat, sheep, and cow WPC (15%). Moreover, Streptococcus salivarius subsp. thermophilus and the probiotic bacteria Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis were used for fermentation. The results showed that WPC significantly increased the protein content and acidity of beverages (p < 0.05). Production with WPC also improved the viability of probiotic bacteria and S. thermophilus, total phenolic compound (TPC), and antioxidant activity of beverages. The highest viability of probiotic bacteria (9.67 log CFU/mL for Bb-12 and, 9.35 log CFU/mL for L. acidophilus) was found in beverages produced from goat WPC. In addition, WPC increased the free amino acid content of beverages, and the highest essential amino acids and branched-chain amino acids were found in beverages produced from goat WPC as 146.19 mg/100 g and 70.31 mg/100 g, respectively (p < 0.05). Consequently, while production with goat, cow, and sheep WPC improved quality compared to the control, beverages produced from goat WPC excelled. The production of a functional probiotic beverage with goat WPC is promising for dairy technology.

Keywords: antioxidant activity; free amino acids; functional probiotic beverage; goat WPC; sheep WPC; whey valorization.