Effect of muscle temperature on leg extension force and short-term power output in humans

Eur J Appl Physiol Occup Physiol. 1987;56(6):693-8. doi: 10.1007/BF00424812.


The effect of changing muscle temperature on performance of short term dynamic exercise in man was studied. Four subjects performed 20 s maximal sprint efforts at a constant pedalling rate of 95 crank rev.min-1 on an isokinetic cycle ergometer under four temperature conditions: from rest at room temperature; and following 45 min of leg immersion in water baths at 44; 18; and 12 degrees C. Muscle temperature (Tm) at 3 cm depth was respectively 36.6, 39.3, 31.9 and 29.0 degrees C. After warming the legs in a 44 degrees C water bath there was an increase of approximately 11% in maximal peak force and power (PPmax) compared with normal rest while cooling the legs in 18 and 12 degrees C water baths resulted in reductions of approximately 12% and 21% respectively. Associated with an increased maximal peak power at higher Tm was an increased rate of fatigue. Two subjects performed isokinetic cycling at three different pedalling rates (54, 95 and 140 rev.min-1) demonstrating that the magnitude of the temperature effect was velocity dependent: At the slowest pedalling rate the effect of warming the muscle was to increase PPmax by approximately 2% per degree C but at the highest speed this increased to approximately 10% per degree C.

MeSH terms

  • Adult
  • Body Temperature*
  • Female
  • Humans
  • Leg / physiology*
  • Male
  • Muscles / metabolism
  • Muscles / physiology*
  • Oxygen Consumption
  • Physical Exertion*