Heterostructural Nanosheets Consisting of Polycyclic Aromatic Hydrocarbon Shields and Layered Perovskite Cores for Optical Image Encryption

J Phys Chem Lett. 2023 Mar 2;14(8):2047-2055. doi: 10.1021/acs.jpclett.3c00316. Epub 2023 Feb 16.

Abstract

Optical image encryption technology, in which the emission on/off can be controlled by using specially appointed wavelengths, is useful in information storage and protection. Herein, we report a family of sandwiched heterostructural nanosheets, consisting of three-layered (n = 3) perovskite (PSK) frameworks in center with two different polycyclic aromatic hydrocarbons [triphenylene (Tp) and pyrene (Py)] in periphery. Both heterostructural nanosheets (Tp-PSK and Py-PSK) exhibit blue emissions under UVA-I irradiation; however, different photoluminescent properties are observed under UVA-II. A bright emission of Tp-PSK is attributed to the fluorescence resonance energy transfer (FRET) from Tp-shield to PSK-core, whereas the observed photoquenching phenomenon in Py-PSK is due to the competitive absorption between Py-shield and PSK-core. We exploited the unique photophysical features (on/off emission) of the two nanosheets in a narrow UV window (320-340 nm) for optical image encrypting.