Asynchronising five-fold symmetry sequence for better homonuclear polarisation transfer in magic-angle-spinning solid-state NMR

Solid State Nucl Magn Reson. 2023 Feb 11;124:101858. doi: 10.1016/j.ssnmr.2023.101858. Online ahead of print.


Recoupling, decoupling, and multidimensional correlation experiments in magic-angle-spinning (MAS) solid-state NMR can be designed by exploiting the symmetry of internal spin interactions. One such scheme, namely, C521, and its supercycled version SPC521, notated as a five-fold symmetry sequence, is widely used for double-quantum dipole-dipole recoupling. Such schemes are generally rotor synchronised by design. We demonstrate an asynchronous implementation of the SPC521 sequence leading to higher double-quantum homonuclear polarisation transfer efficiency compared to the normal synchronous implementation. Rotor-synchronisation is broken in two different ways: lengthening the duration of one of the pulses, denoted as pulse-width variation (PWV), and mismatching the MAS frequency denoted as MAS variation (MASV). The application of this asynchronous sequence is shown on three different samples, namely, U-13C-alanine and 1,4-13C-labelled ammonium phthalate which include 13Cα-13Cβ, 13Cα-13Co, and 13Co-13Co spin systems, and adenosine 5'- triphosphate disodium salt trihydrate (ATP⋅3H2O). We show that the asynchronous version performs better for spin pairs with small dipole-dipole couplings and large chemical-shift anisotropies, for example, 13Co-13Co. Simulations and experiments are shown to corroborate the results.

Keywords: Asynchronous implementation; Double-quantum recoupling; Magic-angle spinning; Solid-state NMR; Symmetry sequence.