Parametric maps of spatial two-tissue compartment model for prostate dynamic contrast enhanced MRI - comparison with the standard Tofts model in the diagnosis of prostate cancer

Res Sq [Preprint]. 2023 Feb 8:rs.3.rs-2539644. doi: 10.21203/rs.3.rs-2539644/v1.

Abstract

The spatial two-tissue compartment model (2TCM) was used to analyze prostate dynamic contrast enhanced (DCE) MRI data and compared with the standard Tofts model. A total of 29 patients with biopsy-confirmed prostate cancer were included in this IRB-approved study. MRI data were acquired on a Philips Achieva 3T-TX scanner. After T2-weighted and diffusion-weighted imaging, DCE data using 3D T1-FFE mDIXON sequence were acquired pre- and post-contrast media injection (0.1 mmol/kg Multihance) for 60 dynamic scans with temporal resolution of 8.3 s/image. The 2TCM has one fast (K 1 trans and k 1 ep ) and one slow (K 2 trans and k 2 ep ) exchanging compartment, compared with the standard Tofts model parameters (K trans and k ep ). On average, prostate cancer had significantly higher values (p < 0.007) than normal prostate tissue for all calculated parameters. There was a strong correlation (r = 0.94, p < 0.0001) between K trans and K 1 trans for cancer, but weak correlation (r = 0.28, p < 0.05) between k ep and k 1 ep . Average root-mean-square error (RMSE) in fits from the 2TCM was significantly smaller (p < 0.001) than the RMSE in fits from the Tofts model. Receiver operating characteristic (ROC) analysis showed that fast K 1 trans had the highest area under the curve (AUC) than any other individual parameter. The combined four parameters from the 2TCM had a considerably higher AUC value than the combined two parameters from the Tofts model. The 2TCM may be useful for quantitative analysis of prostate DCE-MRI data and may provide new information in the diagnosis of prostate cancer.

Publication types

  • Preprint