Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines

J Genet Eng Biotechnol. 2023 Feb 22;21(1):23. doi: 10.1186/s43141-023-00474-0.

Abstract

Background: The biopharmaceutical industry is significantly growing worldwide, and the Chinese hamster ovary (CHO) cells are used as a main expression host for the production of recombinant monoclonal antibodies. Various metabolic engineering approaches have been investigated to generate cell lines with improved metabolic characteristics for increasing longevity and mAb production. A novel cell culture method based on the 2-stage selection makes it possible to develop a stable cell line with high-quality mAb production.

Results: We have constructed several design options of mammalian expression vectors for the high production of recombinant human IgG antibodies. Versions for bipromoter and bicistronic expression plasmids different in promoter orientation and cistron arrangements were generated. The aim of the work presented here was to assess a high-throughput mAb production system that integrates the advantages of high-efficiency cloning and stable cell clones to stage strategy selection reducing the time and effort required to express therapeutic monoclonal mAbs. Development of a stable cell line using bicistronic construct with EMCV IRES-long link gave an advantage in high mAb expression and long-term stability. Two-stage selection strategies allowed the elimination of low-producer clones by using metabolic level intensity to estimate the IgG production in the early steps of selection. The practical application of the new method allows to reduce time and costs during stable cell line development.

Keywords: Bipromoter/bicistronic plasmid; Expression vector; Level metabolites; Stable cell lines; mAbs production.