Purpose: Accurate quantification of ischemic core and ischemic penumbra is mandatory for late-presenting acute ischemic stroke. Substantial differences between MR perfusion software packages have been reported, suggesting that the optimal Time-to-Maximum (Tmax) threshold may be variable. We performed a pilot study to assess the optimal Tmax threshold of two MR perfusion software packages (A: RAPID®; B: OleaSphere®) by comparing perfusion deficit volumes to final infarct volumes as ground truth.
Methods: The HIBISCUS-STROKE cohort includes acute ischemic stroke patients treated by mechanical thrombectomy after MRI triage. Mechanical thrombectomy failure was defined as a modified thrombolysis in cerebral infarction score of 0. Admission MR perfusion were post-processed using two packages with increasing Tmax thresholds (≥ 6 s, ≥ 8 s and ≥ 10 s) and compared to final infarct volume evaluated with day-6 MRI.
Results: Eighteen patients were included. Lengthening the threshold from ≥ 6 s to ≥ 10 s led to significantly smaller perfusion deficit volumes for both packages. For package A, Tmax ≥ 6 s and ≥ 8 s moderately overestimated final infarct volume (median absolute difference: - 9.5 mL, interquartile range (IQR) [- 17.5; 0.9] and 0.2 mL, IQR [- 8.1; 4.8], respectively). Bland-Altman analysis indicated that they were closer to final infarct volume and had narrower ranges of agreement compared with Tmax ≥ 10 s. For package B, Tmax ≥ 10 s was closer to final infarct volume (median absolute difference: - 10.1 mL, IQR: [- 17.7; - 2.9]) versus - 21.8 mL (IQR: [- 36.7; - 9.5]) for Tmax ≥ 6 s. Bland-Altman plots confirmed these findings (mean absolute difference: 2.2 mL versus 31.5 mL, respectively).
Conclusions: The optimal Tmax threshold for defining the ischemic penumbra appeared to be most accurate at ≥ 6 s for package A and ≥ 10 s for package B. This implies that the widely recommended Tmax threshold ≥ 6 s may not be optimal for all available MRP software package. Future validation studies are required to define the optimal Tmax threshold to use for each package.
Keywords: Image processing; Perfusion MR; Stroke; Thrombectomy.
© 2023. The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB).