Minimally invasive extraocular cranial nerve electromyography

J Neurosurg. 2023 Feb 24;139(3):864-872. doi: 10.3171/2023.1.JNS221690. Print 2023 Sep 1.


Objective: A reluctance to monitor extraocular cranial nerve (EOCN) function has restricted skull base surgery worldwide. Spontaneous and triggered electromyography (EMG) monitoring can be recorded intraoperatively to identify and assess potential cranial nerve injury. Determining the conductive function of EOCNs requires the collection of clear, reliable, and repeatable compound muscle action potentials (CMAPs) secondary to stimulation. EOCN EMG needle electrodes can, although infrequently, cause ocular morbidity including hematoma, edema, and scleral laceration. The aim of this study was to ascertain if minimally invasive 7-mm superficial needle electrodes would record CMAPs as well as standard 13-mm intraorbital electrodes.

Methods: Conventionally, the authors have monitored EOCN function with intraorbital placement of paired 13-mm needle electrodes into three extraocular muscles: medial rectus, superior oblique, and lateral rectus. A prospective case-control study was performed using shorter (7-mm) needle electrodes. A single minimally invasive electrode was placed superficially near each extraocular muscle and coupled with a common reference. CMAPs were recorded from the minimally invasive electrodes and compared with CMAPs recorded from the paired intraorbital electrodes. The presence or absence of CMAPs was analyzed and compared among EMG recording techniques.

Results: A total of 429 CMAPs were analyzed from 71 EOCNs in 25 patients. The experimental setup yielded 167 true-positive (39%), 106 false-positive (25%), 17 false-negative (4%), and 139 true-negative (32%) responses. These values were used to calculate the sensitivity (91%), specificity (57%), positive predictive value (61%), and negative predictive value (89%). EOCN electrodes were placed in 82 total eyes in 58 patients (CMAPs were obtained in 25 patients). Twenty-six eyes showed some degree of edema, bruising, or bleeding, which was transient and self-resolving. Three eyes in different patients had complications from needle placement or extraction including conjunctival hemorrhage, periorbital ecchymosis, and corneal abrasion, ptosis, and upper eyelid edema.

Conclusions: Because of artifact contamination, 106 false-positive responses (25%), and 17 false-negative responses (4%), the minimally invasive EMG technique cannot reliably record CMAP responses intraoperatively as well as the intraorbital technique. Less-invasive techniques can lead to an inaccurate EOCN assessment and potential postoperative morbidity. EOCN palsies can be debilitating and lifelong; therefore, the benefits of preserving EOCN function outweigh the potential risks of morbidity from electrode placement. EMG monitoring with intraorbital electrodes remains the most reliable method of intraoperative EOCN assessment.

Keywords: abducens; diagnostic technique; endoscopic endonasal surgery; neurophysiology; oculomotor; trochlear.

MeSH terms

  • Case-Control Studies
  • Cranial Nerves*
  • Electrodes
  • Electromyography / methods
  • Humans
  • Oculomotor Muscles* / innervation
  • Oculomotor Muscles* / physiology
  • Oculomotor Muscles* / surgery