A closed-loop, all-electronic pixel-wise adaptive imaging system for high dynamic range videography

IEEE Trans Circuits Syst I Regul Pap. 2020 Jun;67(6):1803-1814. doi: 10.1109/tcsi.2020.2973396. Epub 2020 Feb 27.

Abstract

Digital cameras expose and readout all pixels in accordance with a global sample clock. This rigid global control of exposure and sampling is problematic for capturing scenes with large variance in brightness and motion, and may cause regions of motion blur, under- and overexposure. To address these issues, we developed a CMOS imaging system that automatically adjusts each pixel's exposure and sampling rate to fit local motion and brightness. This system consists of an image sensor with pixel-addressable exposure configurability in combination with a real-time, per-pixel exposure controller. It operates in a closed-loop to sample, detect and optimize each pixel's exposure and sampling rate for optimal acquisition. Per-pixel exposure control is implemented using all-integrated electronics without external optical modulation. This reduces system complexity and power consumption compared to existing solutions. Implemented using standard 130nm CMOS process, the chip has 256 × 256 pixels and consumes 7.31mW. To evaluate performance, we used this system to capture scenes with complex lighting and motion conditions that would lead to loss of information for globally-exposed cameras. These results demonstrate the advantage of pixel-wise adaptive imaging for a range of computer vision tasks such as segmentation, motion estimation and object recognition.

Keywords: Exposure control; High dynamic range; Image sensor; Pixel-wise coded imaging.