Forkhead box L2 is a target of miR-133b and plays an important role in the pathogenesis of non-small cell lung cancer

Cancer Med. 2023 Apr;12(8):9826-9842. doi: 10.1002/cam4.5746. Epub 2023 Feb 27.

Abstract

Background: Forkhead box L2 (FOXL2) has been recognized as a transcription factor in the progression of many malignancies, but its role in non-small cell lung cancer (NSCLC) remains unclear. This research clarified on the role of FOXL2 and the specific molecular mechanism in NSCLC.

Methods: RNA and protein levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting assays. Cell proliferation was examined by cell counting kit-8 (CCK-8) and clonogenic assays. Transwell and wound healing assays were used to detect cell invasion and migration. Cell cycle alterations were assessed by flow cytometry. The relationship between FOXL2 and miR-133b was verified by dual-luciferase reporter assays. In vivo metastasis was monitored in the tail vein-injected mice.

Results: FOXL2 was upregulated in NSCLC cells and tissues. Downregulation of FOXL2 restrained cell proliferation, migration, and invasion and arrested the cell cycle of NSCLC cells. Moreover, FOXL2 promoted the epithelial-mesenchymal transition (EMT) process of NSCLC cells by inducing the transforming growth factor-β (TGF-β)/Smad signaling pathway. miR-133b directly targeted the 3'-UTR of FOXL2 and negatively regulated FOXL2 expression. Knockdown of FOXL2 blocked metastasis in vivo.

Conclusions: miR-133b downregulates FOXL2 by targeting the 3'-UTR of FOXL2, thereby inhibiting cell proliferation, EMT and metastasis induced by the TGF-β/Smad signaling pathway in NSCLC. FOXL2 may be a potential molecular target for treating NSCLC.

Keywords: TGF-β/Smad signaling; carcinoma, non-small-cell lung cancer (NSCLC); epithelial-mesenchymal transition (EMT); forkhead box protein L2 (FOXL2); miR-133b.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carcinoma, Non-Small-Cell Lung* / pathology
  • Cell Line, Tumor
  • Cell Movement / genetics
  • Cell Proliferation / genetics
  • Epithelial-Mesenchymal Transition / genetics
  • Gene Expression Regulation, Neoplastic
  • Lung Neoplasms* / pathology
  • Mice
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Transforming Growth Factor beta / metabolism

Substances

  • MicroRNAs
  • Transforming Growth Factor beta