Modelling Methods of Economic Evaluations of HIV Testing Strategies in Sub-Saharan Africa: A Systematic Review

Appl Health Econ Health Policy. 2023 Jul;21(4):585-601. doi: 10.1007/s40258-022-00782-5. Epub 2023 Feb 28.

Abstract

Background and objective: Economic evaluations, a decision-support tool for policy makers, will be crucial in planning and tailoring HIV prevention and treatment strategies especially in the wake of stalled and decreasing funding for the global HIV response. As HIV testing and treatment coverage increase, case identification becomes increasingly difficult and costly. Determining which subset of the population these strategies should be targeted to becomes of vital importance as well. Generating quality economic evidence begins with the validity of the modelling approach and the model structure employed. This study synthesises and critiques the reporting around modelling methodology of economic models in the evaluation of HIV testing strategies in sub-Saharan Africa.

Methods: The following databases were searched from January 2000 to September 2020: MEDLINE, Embase, Scopus, EconLit and Global Health. Any model-based economic evaluation of a unique HIV testing strategy conducted in sub-Saharan Africa presenting a cost-effectiveness measure published from 2013 onwards was eligible. Data were extracted around three components: general study characteristics; economic evaluation design; and quality of model reporting using a novel tool developed for the purposes of this study.

Results: A total of 21 studies were included; 10 cost-effectiveness analyses, 11 cost-utility analyses. All but one study was conducted in Eastern and Southern Africa. Modelling approaches for HIV testing strategies can be broadly characterised as static aggregate models (3/21), static individual models (6/21), dynamic aggregate models (5/21) and dynamic individual models (7/21). Adequate reporting around data handling was the highest of the three categories assessed (74%), and model validation, the lowest (45%). Limitations to model structure, justification of chosen time horizon and cycle length, and description of external model validation process were all adequately reported in less than 40% of studies. The predominant limitation of this review relates to the potential implications of the narrow inclusion criteria.

Conclusions: This review is the first to synthesise economic evaluations of HIV testing strategies in sub-Saharan Africa. The majority of models exhibited dynamic, stochastic and individual properties. Model reporting against the 13 criteria in our novel tool was mixed. Future model-based economic evaluations of HIV testing strategies would benefit from transparency around the choice of modelling approach, model structure, data handling procedures and model validation techniques.

Publication types

  • Systematic Review

MeSH terms

  • Africa South of the Sahara
  • Cost-Benefit Analysis
  • HIV Infections* / diagnosis
  • HIV Infections* / prevention & control
  • HIV Testing
  • Humans
  • Research Design*