Effects of prebiotics on intestinal physiology, neuropsychological function, and exercise capacity of mice with sleep deprivation

Food Res Int. 2023 Mar:165:112568. doi: 10.1016/j.foodres.2023.112568. Epub 2023 Feb 2.


People suffered from insufficient or disrupted sleep due to night shifts, work pressure, and irregular lifestyles. Sleep deprivation caused by inadequate quantity or quality of sleep has been associated with not only increased risk of metabolic diseases, gut dysbiosis, and emotional disorders but also decreased work and exercise performance. In this study, we used the modified multiple platform method (MMPM) to induce pathological and psychological characteristics of sleep deprivation with C57BL/6J male mice, and investigated whether supplementing a prebiotics mixture of short-chain galactooligosaccharides (scGOS) and long-chain fructooligosaccharides (lcFOS) (9:1 ratio) could improve the impacts of sleep deprivation on intestinal physiology, neuropsychological function, inflammation, circadian rhythm, and exercise capacity. Results showed that sleep deprivation caused intestinal inflammation (increased TNFA and IL1B) and decreased intestinal permeability with a significant decrease in the tight junction genes (OCLN, CLDN1, TJP1, and TJP2) of intestine and brain. The prebiotics significantly increased the content of metabolite short-chain fatty acids (acetate and butyrate) while recovering the expression of indicated tight junction genes. In hypothalamus and hippocampus, clock (BMAL1 and CLOCK) and tight junction (OCLN and TJP2) genes were improved by prebiotics, and corticotropin-releasing hormone receptor genes, CRF1 and CRF2, were also significantly regulated for mitigation of depression and anxiety caused by sleep deprivation. Also, prebiotics brought significant benefits on blood sugar homeostasis and improvement of exercise performance. Functional prebiotics could improve physiological modulation, neuropsychological behaviors, and exercise performance caused by sleep deprivation, possibly through regulation of inflammation and circadian rhythm for health maintenance. However, the microbiota affected by prebiotics and sleep deprivation should warrant further investigation.

Keywords: Circadian rhythm; Exercise capacity; HPA axis; Prebiotics; Sleep deprivation; Tight junction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain
  • Exercise Tolerance*
  • Homeostasis
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Sleep Deprivation*