OLFML2A Overexpression Predicts an Unfavorable Prognosis in Patients with AML

J Oncol. 2023 Feb 22:2023:6017852. doi: 10.1155/2023/6017852. eCollection 2023.

Abstract

Background: Acute myeloid leukemia (AML) is a malignant clonal disease of the myeloid hematopoietic system. Clinically, standard treatment options include conventional chemotherapy as well as hematopoietic stem cell transplantation. Among them, chemotherapy has a remission rate of 60% to 80% and nearly 50% relapse in consolidation therapy. Some patients have a poor prognosis due to the presence of unfavorable factors such as advanced age, hematologic history, poor prognosis karyotype, severe infection, and organ insufficiency, which cannot tolerate or are not suitable for standard chemotherapy regimens, and scholars have tried to find new treatment strategies to improve this situation. In the pathogenesis and treatment of leukemia, epigenetics has received attention from experts and scholars.

Objective: To investigate the relationship between OLFML2A overexpression and AML patients.

Methods: From The Cancer Genome Atlas, researchers used the data of OLFML2A gene to analyze and study the pan-cancer using R language and then divided the high and low levels of this protein into two groups to study its relationship with the clinical characteristics of the disease. The relationship between the high levels of OLFML2A and various clinical features of the disease was studied with emphasis on the relationship between the high levels of OLFML2A and various clinical features of the disease. A multidimensional Cox regression analysis was also performed to study the factors affecting patient survival. The correlation between OLFML2A expression and immune infiltration through the immune microenvironment was analyzed. The researchers then conducted a series of studies to analyze the data collected in the study. The focus was on the relationship between the high levels of OLFML2A and immune infiltration. Gene ontology analysis was also performed to study the interactions between the different genes associated with this protein.

Results: According to the pan-cancer analysis, OLFML2A was differentially expressed in different tumors. More importantly, the analysis of OLFML2A in the TCGA-AML database revealed that OLFML2A was highly expressed in AML. The researchers found that the high levels of OLFML2A were associated with different clinical features of the disease, and that the expression of the protein was different in different groups. Those patients with the high levels of OLFML2A were found to have substantially longer survival times compared to those with low-protein levels.

Conclusions: The OLFML2A gene is able to act as a molecular indicator involved in the diagnosis, prognosis, and immune process of AML. It improves the molecular biology prognostic system of AML, provides help for the selection of AML treatment options, and provides new ideas for future biologically targeted therapy of AML.