Blood Flow Restricted Cycling Impairs Subsequent Jumping But Not Balance Performance Slightly More Than Non-Restricted Cycling: An Acute Randomized Controlled Cross-Over Trial

J Sports Sci Med. 2023 Mar 1;22(1):44-50. doi: 10.52082/jssm.2023.44. eCollection 2023 Mar.

Abstract

Chronic blood flow restriction (BFR) training has been shown to improve drop jumping (DJ) and balance performance. However, the acute effects of low intensity BFR cycling on DJ and balance indices have not yet been examined. 28 healthy young adults (9 female; 21.8 ± 2.7years; 1.79 ± 0.08m; 73.9 ± 9.5kg) performed DJ and balance testing before and immediately after 20min low intensity cycling (40% of power at maximal oxygen uptake) with (BFR) and without BFR (noBFR). For DJ related parameters, no significant mode × time interactions were found (p ≥ 0.221, ηp 2 ≤ 0.06). Large time effects for DJ heights and the reactive strength index were observed (p < 0.001, ηp 2 ≥ 0.42). Pairwise comparison revealed notably lower values for both DJ jumping height and reactive strength index at post compared to pre (BFR: -7.4 ± 9.4%, noBFR: -4.2 ± 7.4%). No statistically significant mode × time interactions (p ≥ 0.36; ηp 2 ≤ 0.01) have been observed for balance testing. Low intensity cycling with BFR results in increased (p ≤ 0.01; SMD ≥ 0.72) mean heart rate (+14 ± 8bpm), maximal heart rate (+16 ± 12 bpm), lactate (+0.7 ± 1.2 mmol/L), perceived training intensity (+2.5 ± 1.6au) and pain scores (+4.9 ± 2.2au) compared to noBFR. BFR cycling induced acutely impaired DJ performance, but balance performance was not affected, compared to noBFR cycling. Heart rate, lactate, perceived training intensity, and pain scores were increased during BFR cycling.

Keywords: Ischemic preconditioning; PAP; functional balance; occlusion; post- activation potentiation; vertical jump.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bicycling*
  • Cross-Over Studies
  • Female
  • Heart Rate
  • Humans
  • Lactic Acid*
  • Pain
  • Young Adult

Substances

  • Lactic Acid