Background: There is currently no clinically accepted method for quantifying background parenchymal enhancement (BPE), though a sensitive method might allow individualized risk management based on the response to cancer-preventative hormonal therapy.
Objective: The objective of this pilot study is to demonstrate the utility of linear modeling of standardized dynamic contrast-enhanced MRI (DCEMRI) signal for quantifying changes in BPE rates.
Methods: On a retrospective database search, 14 women with DCEMRI examinations pre- and post- treatment with tamoxifen were identified. DCEMRI signal was averaged over the parenchymal ROIs to obtain time-dependent signal curves S(t). The gradient echo signal equation was used to standardize scale S(t) to values of (FA) ̃ = 10° and (TR) ̃ = 5.5 ms, and obtain the standardized parameters of DCE-MRI signal S ̃_p (t). Relative signal enhancement (〖RSE〗_p ) ̃ was calculated from S ̃_p, and the reference tissue method for T1 calculation was used to standardize (〖RSE〗_p ) ̃ to gadodiamide as the contrast agent, obtaining (RSE) ̃. (RSE) ̃, in the first 6 minutes, post-contrast administration was fit to a linear model with the slope α ̃_RSE denoting the standardized rate relative BPE.
Results: Changes in α ̃_RSE were not found to be significantly correlated with the average duration of tamoxifen treatment, age at the initiation of preventative treatment, or pre-treatment BIRADS breast density category. The average change in α ̃_RSE showed a large effect size of -1.12, significantly higher than -0.86 observed without signal standardization (p < 0.01).
Conclusion: Linear modeling of BPE in standardized DCEMRI can provide quantitative measurements of BPE rates, improving sensitivity to changes due to tamoxifen treatment.
Keywords: MRI signal standardization; background parenchymal enhancement (BPE); breast cancer preventative therapy; dynamic contrast-enhanced MRI (DCEMRI); quantitative MRI; risk assessment; risk assessmentquantitative MRI.
Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.