Bridged-Imidazole Dimer Exhibiting Three-State Negative Photochromism with a Single Photochromic Unit

J Am Chem Soc. 2023 Mar 22;145(11):6498-6506. doi: 10.1021/jacs.3c00476. Epub 2023 Mar 8.

Abstract

Photochromic molecules that can exhibit multiple states of photochromism in a single photochromic unit are considered more attractive than traditional bistable photochromic molecules because they can offer more versatility and control in photoresponsive systems. We have synthesized a negative photochromic 1-(1-naphthyl)pyrenyl-bridged imidazole dimer (NPy-ImD) that has three different isomers: a colorless isomer, 6MR, a blue-colored isomer, 5MR-B, and a red-colored isomer, 5MR-R. NPy-ImD can interconvert between these isomers via a short-lived transient biradical, BR, upon photoirradiation. 5MR-R is the most stable isomer, and the energy levels of 6MR, 5MR-B, and BR are relatively close to each other. The colored isomers 5MR-R and 5MR-B are photochemically isomerized to 6MR via the short-lived BR upon irradiation with blue light and red light, respectively. The absorption bands of 5MR-R and 5MR-B are well separated by more than 150 nm, with a small overlap, which means they can be selectively excited with different light sources, visible light for 5MR-R and NIR light for 5MR-B. The colorless isomer 6MR is formed from the short-lived BR through a kinetically controlled reaction. 6MR and 5MR-B can then be converted to the more stable isomer 5MR-R through a thermodynamically controlled reaction, which is facilitated by the thermally accessible intermediate, BR. Notably, 5MR-R photoisomerizes to 6MR when irradiated with CW-UV light, whereas it photoisomerizes to 5MR-B by a two-photon process when irradiated with nanosecond UV laser pulses.