A systematic assessment of preclinical multilaboratory studies and a comparison to single laboratory studies

Elife. 2023 Mar 9;12:e76300. doi: 10.7554/eLife.76300.


Background: Multicentric approaches are widely used in clinical trials to assess the generalizability of findings, however, they are novel in laboratory-based experimentation. It is unclear how multilaboratory studies may differ in conduct and results from single lab studies. Here, we synthesized the characteristics of these studies and quantitatively compared their outcomes to those generated by single laboratory studies.

Methods: MEDLINE and Embase were systematically searched. Screening and data extractions were completed in duplicate by independent reviewers. Multilaboratory studies investigating interventions using in vivo animal models were included. Study characteristics were extracted. Systematic searches were then performed to identify single lab studies matched by intervention and disease. Difference in standardized mean differences (DSMD) was then calculated across studies to assess differences in effect estimates based on study design (>0 indicates larger effects in single lab studies).

Results: Sixteen multilaboratory studies met inclusion criteria and were matched to 100 single lab studies. The multicenter study design was applied across a diverse range of diseases, including stroke, traumatic brain injury, myocardial infarction, and diabetes. The median number of centers was four (range 2-6) and the median sample size was 111 (range 23-384) with rodents most frequently used. Multilaboratory studies adhered to practices that reduce the risk of bias significantly more often than single lab studies. Multilaboratory studies also demonstrated significantly smaller effect sizes than single lab studies (DSMD 0.72 [95% confidence interval 0.43-1]).

Conclusions: Multilaboratory studies demonstrate trends that have been well recognized in clinical research (i.e. smaller treatment effects with multicentric evaluation and greater rigor in study design). This approach may provide a method to robustly assess interventions and the generalizability of findings between laboratories.

Funding: uOttawa Junior Clinical Research Chair; The Ottawa Hospital Anesthesia Alternate Funds Association; Canadian Anesthesia Research Foundation; Government of Ontario Queen Elizabeth II Graduate Scholarship in Science and Technology.

Keywords: epidemiology; global health; medicine; metaresearch; mouse; multicenter; multilaboratory; rat; reproducibility.

Publication types

  • Systematic Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Multicenter Studies as Topic
  • Myocardial Infarction*
  • Ontario

Grant support

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.