Bitumen binder is a component of asphalt mixtures that are commonly used as the materials constituting the upper layers of a pavement's structure. Its main role is to cover all the remaining constituents (aggregate, filler and other possible additives) and create a stable matrix, in which they are embedded due to the adhesion forces. The long-term performance of bitumen binder is crucial to the holistic behavior of the layer made of the asphalt mixture. In this study, we use the respective methodology to identify the parameters of the well-established Bodner-Partom material model. For the purposes of its parameters identification, we carry out a number of the uniaxial tensile tests with different strain rates. The whole process is enhanced with a digital image correlation (DIC) to capture the material response in a reliable way and to provide deeper insight into the experiment results. The obtained model parameters were used to compute numerically the material response using the Bodner-Partom model. Good agreement between the experimental and numerical results was observed. The maximum error for the elongation rates equal to 6 mm/min and 50 mm/min is of order of 10%. The novel aspects of this paper are as follows: the application of the Bodner-Partom model to the bitumen binder analysis and the DIC-enhancement of the laboratory experiment.
Keywords: bitumen binder; digital image correlation; numerical modeling.