Caffeine can alleviate non-alcoholic fatty liver disease by augmenting LDLR expression via targeting EGFR

Food Funct. 2023 Apr 3;14(7):3269-3278. doi: 10.1039/d2fo02701a.

Abstract

Increasing low-density lipoprotein receptor (LDLR) protein levels represents a key strategy for the prevention and treatment. Berberine can reportedly alleviate non-alcoholic fatty liver disease (NAFLD) by increasing the LDLR expression in an ERK1/2 signaling-dependent manner of NAFLD. Studies have shown that caffeine can inhibit fat deposition in the livers of mice; however, caffeine has not been reported to alleviate NAFLD by augmenting the LDLR expression via targeting EGFR. Here, an MTT assay, western blotting, RT-qPCR, immunohistochemistry, and surface plasmon resonance (SPR) analysis were used to investigate the role of caffeine in low-density lipoprotein cholesterol (LDL-C) clearance both in vitro and in vivo. In vitro, we found that caffeine could activate the EGFR-ERK1/2 signaling pathway in HepG2 cells, leading to increased LDLR mRNA and protein expression, and this effect could be inhibited by cetuximab. The SPR assay results have indicated that caffeine may increase the LDLR expression by directly binding to the EGFR extracellular domain and activating the EGFR-ERK1/2 signaling pathway. In vivo, caffeine markedly improved fatty liver and related blood indices in ApoE KO mice with high-fat-diet-induced NAFLD. Consistent with our in vitro results, we found that caffeine could also activate EGFR-ERK1/2 signaling and promote the LDLR expression in ApoE KO mice. In summary, caffeine can enhance the LDLR expression by directly binding to EGFR and activating the EGFR-ERK1/2 signaling pathway. EGFR signaling may represent a novel target for the prevention and treatment of NAFLD.

MeSH terms

  • Animals
  • Apolipoproteins E / genetics
  • Caffeine / metabolism
  • Caffeine / pharmacology
  • Cholesterol, LDL / metabolism
  • ErbB Receptors / genetics
  • ErbB Receptors / metabolism
  • Liver / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Non-alcoholic Fatty Liver Disease* / drug therapy
  • Non-alcoholic Fatty Liver Disease* / genetics
  • Non-alcoholic Fatty Liver Disease* / metabolism
  • Receptors, LDL / genetics
  • Receptors, LDL / metabolism

Substances

  • Caffeine
  • Receptors, LDL
  • Cholesterol, LDL
  • ErbB Receptors
  • Apolipoproteins E