Construction of defected MOF-74 with preserved crystallinity for efficient catalytic cyanosilylation of benzaldehyde

RSC Adv. 2023 Mar 13;13(12):8220-8226. doi: 10.1039/d3ra01222k. eCollection 2023 Mar 8.

Abstract

Numerous open metal sites and well-developed micropores are the two most significant characteristics that should be imparted to design metal-organic frameworks (MOFs) as effective catalysts. However, the construction of the best MOF catalyst with both these characteristics is challenging because the creation of numerous open metal sites generally triggers some structural collapse of the MOF. Herein, we report the construction of well-structured but defected MOFs through the growth of defected MOFs, where some of the original organic linkers were replaced with analog organic linkers, on the surface of a crystalline MOF template (MOF-on-MOF growth). Additional open metal sites within the MOF-74 structure were generated by replacing some of the 2,5-dihydroxy-1,4-bezenedicarboxylic acid presenting in MOF-74 with 1,4-benzenedicarboxylic acid due to the missing hydroxyl groups. And the resulting additional open metal sites within the MOF-74 structure resulted in enhanced catalytic activity for the cyanosilylation of aldehydes. However, the collapse of some of the well-developed MOF-74 structure was also followed by structural defects. Whereas, the growth of defected MOF-74 (D-MOF-74) on the well-crystallized MOF-74 template led to the production of relatively well-crystallized D-MOF-74. Core-shell type MOF-74@D-MOF-74 having abundant open metal sites with a preserved crystallinity exhibited the efficient catalytic cyanosilylation of several aldehydes. Additionally, MOF-74@D-MOF-74 displayed excellent recyclability during the consecutive catalytic cycles.