Smooth muscle contributes to the development and function of a layered intestinal stem cell niche

Dev Cell. 2023 Apr 10;58(7):550-564.e6. doi: 10.1016/j.devcel.2023.02.012. Epub 2023 Mar 15.

Abstract

Wnt and Rspondin (RSPO) signaling drives proliferation, and bone morphogenetic protein inhibitors (BMPi) impede differentiation, of intestinal stem cells (ISCs). Here, we identify the mouse ISC niche as a complex, multi-layered structure that encompasses distinct mesenchymal and smooth muscle populations. In young and adult mice, diverse sub-cryptal cells provide redundant ISC-supportive factors; few of these are restricted to single cell types. Niche functions refine during postnatal crypt morphogenesis, in part to oppose the dense aggregation of differentiation-promoting BMP+ sub-epithelial myofibroblasts at crypt-villus junctions. Muscularis mucosae, a specialized muscle layer, first appears during this period and supplements neighboring RSPO and BMPi sources. Components of this developing niche are conserved in human fetuses. The in vivo ablation of mouse postnatal smooth muscle increases BMP signaling activity, potently limiting a pre-weaning burst of crypt fission. Thus, distinct and progressively specialized mesenchymal cells together create the milieu that is required to propagate crypts during rapid organ growth and to sustain adult ISCs.

Keywords: crypt fission; epithelial-mesenchymal co-cultures; intestinal crypt morphogenesis; intestinal stem cell niche; intestinal sub-epithelial myofibroblasts; single-cell RNA profiles; smooth muscle; trophocytes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bone Morphogenetic Proteins / metabolism
  • Cell Differentiation
  • Humans
  • Intestinal Mucosa / metabolism
  • Intestines*
  • Mice
  • Muscle, Smooth
  • Stem Cell Niche* / physiology

Substances

  • Bone Morphogenetic Proteins