Stoichiometric balance ratio of cellobiose and gentiobiose induces cellulase production in Talaromyces cellulolyticus

Biotechnol Biofuels Bioprod. 2023 Mar 16;16(1):48. doi: 10.1186/s13068-023-02296-1.

Abstract

Background: The exact mechanism by which fungal strains sense insoluble cellulose is unknown, but research points to the importance of transglycosylation products generated by fungi during cellulose breakdown. Here, we used multi-omics approach to identify the transglycosylation metabolites and determine their function in cellulase induction in a model strain, Talaromyces cellulolyticus MTCC25456.

Results: Talaromyces sp. is a novel hypercellulolytic fungal strain. Based on genome scrutiny and biochemical analysis, we predicted the presence of cellulases on the surface of its spores. We performed metabolome analysis to show that these membrane-bound cellulases act on polysaccharides to form a mixture of disaccharides and their transglycosylated derivatives. Inevitably, a high correlation existed between metabolite data and the KEGG enrichment analysis of differentially expressed genes in the carbohydrate metabolic pathway. Analysis of the contribution of the transglycosylation product mixtures to cellulase induction revealed a 57% increase in total cellulase. Further research into the metabolites, using in vitro induction tests and response surface methodology, revealed that Talaromyces sp. produces cell wall-breaking enzymes in response to cellobiose and gentiobiose as a stimulant. Precisely, a 2.5:1 stoichiometric ratio of cellobiose to gentiobiose led to a 2.4-fold increase in cellulase synthesis. The application of the optimized inducers in cre knockout strain significantly increased the enzyme output.

Conclusion: This is the first study on the objective evaluation and enhancement of cellulase production using optimized inducers. Inducer identification and genetic engineering boosted the cellulase production in the cellulolytic fungus Talaromyces sp.

Keywords: Cellobiose; Cellulase; Gentiobiose; Inducer; Talaromyces sp..