Development of the precerebellar nuclei in the rat: III. The posterior precerebellar extramural migratory stream and the lateral reticular and external cuneate nuclei

J Comp Neurol. 1987 Mar 22;257(4):513-28. doi: 10.1002/cne.902570404.

Abstract

Sequential thymidine radiograms from rats injected on day E15 and killed thereafter at daily intervals up to day E22 were analyzed to trace the migratory routes and settling patterns of neurons of the lateral reticular nucleus and the external cuneate nucleus. The neurons of the lateral reticular and external cuneate nuclei originate in the primary precerebellar neuroepithelium at the same site as the inferior olivary neurons but follow a different migratory route. The labeled young neurons that are produced on day E15 (the last one-third of the total) join the posterior precerebellar extramural migratory stream. The cells move circumferentially over the wall of the medulla in a ventral direction and by day E17 reach the midline and cross it beneath the inferior olive. The crossing cells apparently continue to migrate circumferentially on the opposite side. One complement of these cells begins to form a ventrolateral extramural condensation on day E19. By day E20 some cells begin to penetrate the parenchyma and settle as neurons of the lateral reticular nucleus. The settling of the lateral reticular neurons continues on the following day, and by day E22 all the cells destined for the lateral reticular nucleus have penetrated the parenchyma. A dorsomedial-to-ventrolateral neurogenetic gradient is indicated for the settling lateral reticular neurons. Another complement of migrating cells continues dorsally and forms a condensation on day E19 that we interpret as the external cuneate component of the crossed stream. These cells begin to penetrate the parenchyma on day E20, and by days E21 and E22 two components of the external cuneate nucleus are identifiable-the dorsal and ventral external cuneate nuclei. The neurons of the lateral reticular and external cuneate nuclei differ from neurons of all the other precerebellar nuclei in that their cerebellar projection is predominantly ipsilateral. We speculate that the axons of all precerebellar neurons are genetically specified to cross the midline ventrally to provide a contralateral efferent projection, but this is modified in the case of the ipsilaterally projecting lateral reticular and external cuneate neurons by the cell bodies following their neurites to the opposite side.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Autoradiography
  • Cell Movement
  • Cerebellar Nuclei / cytology
  • Cerebellar Nuclei / diagnostic imaging
  • Cerebellar Nuclei / embryology*
  • Medulla Oblongata / diagnostic imaging
  • Medulla Oblongata / embryology*
  • Neural Pathways / embryology
  • Neurons / physiology*
  • Radiography
  • Rats / embryology*
  • Rats, Inbred Strains
  • Reticular Formation / diagnostic imaging
  • Reticular Formation / embryology*
  • Thymidine

Substances

  • Thymidine