Incidence of barotrauma in patients with COVID-19 (alpha- and beta-predominant period) requiring mechanical ventilation: Single-center retrospective study

SAGE Open Med. 2023 Mar 16:11:20503121231159479. doi: 10.1177/20503121231159479. eCollection 2023.

Abstract

Objective: We sought to determine predictors, incidence, and interventions required for patients who developed barotrauma. Pneumothorax, subcutaneous emphysema, and pneumomediastinum have all been reported as complications related to COVID-19-positive patients requiring invasive mechanical ventilation.

Methods: In this retrospective study, clinical and imaging data from COVID-19 patients were collected and reviewed by two independent intensivists between January 4, 2020 and January 10, 2020. Data were used to identify COVID-19-positive patients requiring invasive mechanical ventilation and the incidence of barotrauma. Two separate cohorts were created as non-injured (no barotrauma) and injured (barotrauma present). We then sought to identify the risk factors for barotrauma in the non-injured cohort on Days 0, 7, 10, and 14 after intubation and day of injury in the injured cohort.

Results: Of the 264 patients with COVID-19, 55.8% were African American. The non-injured group was older (60 ± 15 versus 49 ± 16, p = 0.006), with male predominance in the injured group versus non-injured group (75% versus 55%). A total of 16 (6.5%) patients developed one or more complications of barotrauma, defined as subcutaneous emphysema, pneumothorax, or pneumomediastinum. Length of stay was longer for the injured group versus non-injured group (47 versus 25 days). Plateau pressure (p = 0.024), fraction of inspired oxygen (p < 0.001), and driving pressure (p = 0.001) were statistically significant in injured cohort. Mortality rate in non-injured versus injured was 49.4% versus 69%. Using random effect model, fraction of inspired oxygen (p = 0.003) and mean airway pressure (p = 0.010) were significant at the time of injury. When comparing alive versus deceased in the injured cohort, thoracostomy placement in alive versus deceased was 80% versus 54.5%.

Conclusion: COVID acute respiratory distress syndrome patients requiring invasive mechanical ventilation had a higher rate of barotrauma and were younger than those who did not develop barotrauma. Possible interventions to be considered to decrease barotrauma are decreased driving pressure goal and universal use of esophageal balloon manometry.

Keywords: COVID-19; barotrauma; esophageal balloon manometry; invasive mechanical ventilation; pneumomediastinum; pneumothorax.