Construction of a TiO2/BiOCl heterojunction for enhanced solar photocatalytic oxidation of nitric oxide

Dalton Trans. 2023 Apr 11;52(15):4862-4872. doi: 10.1039/d3dt00082f.

Abstract

TiO2/BiOCl heterojunction photocatalysts with different molar ratios (Ti : Bi) were synthesized by a simple solvothermal method. Various spectroscopic techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), nitrogen adsorption-desorption, X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) were used to characterize the prepared photocatalysts. The photocatalytic activity of the catalysts was investigated by removing low concentrations of nitrogen oxides. The characterization results show that the TiO2/BiOCl composite photocatalyst exhibits superior visible light response performance than pure BiOCl and TiO2. The optimized TiO2/BiOCl heterojunction with a Ti : Bi molar ratio of 4 : 1 has the best photocatalytic performance. The removal rate of nitrogen oxides of the composite photocatalyst can reach 75%, which is 2.34 times higher than that of pure BiOCl. The observed photocatalytic degradation activity of nitrogen oxides outperforms current state-of-the-art functional photocatalysts. The TiO2/BiOCl composite photocatalyst has a larger specific surface area, stronger visible light absorption and higher charge separation efficiency compared to other control samples, which contribute to the enhanced photocatalytic activity. The experimental results indicate that the combination of TiO2 with BiOCl is a promising technique to design visible light-responsive photocatalysts.