Thalamocortical disconnection involved in pusher syndrome

Brain. 2023 Sep 1;146(9):3648-3661. doi: 10.1093/brain/awad096.

Abstract

The presence of both isolated thalamic and isolated cortical lesions have been reported in the context of pusher syndrome-a disorder characterized by a disturbed perception of one's own upright body posture, following unilateral left- or right-sided stroke. In recent times, indirect quantification of functional and structural disconnection increases the knowledge derived from focal brain lesions by inferring subsequent brain network damage from the respective lesion. We applied both measures to a sample of 124 stroke patients to investigate brain disconnection in pusher syndrome. Our results suggest a hub-like function of the posterior and lateral portions of the thalamus in the perception of one's own postural upright. Lesion network symptom mapping investigating functional disconnection indicated cortical diaschisis in cerebellar, frontal, parietal and temporal areas in patients with thalamic lesions suffering from pusher syndrome, but there was no evidence for functional diaschisis in pusher patients with cortical stroke and no evidence for the convergence of thalamic and cortical lesions onto a common functional network. Structural disconnection mapping identified posterior thalamic disconnection to temporal, pre-, post- and paracentral regions. Fibre tracking between the thalamic and cortical pusher lesion hotspots indicated that in cortical lesions of patients with pusher syndrome, it is disconnectivity to the posterior thalamus caused by accompanying white matter damage, rather than the direct cortical lesions themselves, that lead to the emergence of pusher syndrome. Our analyses thus offer the first evidence for a direct thalamo-cortical (or cortico-thalamic) interconnection and, more importantly, shed light on the location of the respective thalamo-cortical disconnections. Pusher syndrome seems to be a consequence of direct damage or of disconnection of the posterior thalamus.

Keywords: diaschisis; lateropulsion; lesion network symptom mapping; structural disconnection; thalamus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain / pathology
  • Diaschisis*
  • Humans
  • Magnetic Resonance Imaging
  • Stroke*
  • Thalamus