Ultrathin PdCu Nanosheet as Bifunctional Electrocatalysts for Formate Oxidation Reaction and Oxygen Reduction Reaction

Small Methods. 2023 Jul;7(7):e2300021. doi: 10.1002/smtd.202300021. Epub 2023 Mar 24.

Abstract

The development of robust nonplatinum electrocatalysts to enhance the performance of formate oxidation reaction (FOR) and oxygen reduction reaction (ORR) is one of the key issues for the commercialization of direct formate fuel cells (DFFCs), but still challenging. Herein, a structurally controlled 3D flower-like PdCu nanosheet (NS) catalyst is synthesized by a method of oil bath reduction under mild conditions as a bifunctional electrocatalyst for DFFCs. Under the dual tuning on the composition and intermetallic phase, the PdCu nanosheet catalyst exhibits 8.67 times higher mass activity for anodic formate oxidation reaction than the commercial Pd/C. For the cathodic ORR, a positive shift half-wave potential is obtained for PdCu nanosheets exceeding Pt/C. Moreover, after a long-term stability test, the current density of the PdCu nanosheet catalyst for FOR and ORR can be well maintained with the least activity decay. When the PdCu NSs are used as optimized anode and cathode electrodes for DFFCs enable a peak power density as high as 53 mW cm-2 at room temperature, which is about 1.3 times higher than that of the commercial Pd/C and Pt/C as anode and cathode electrodes. This work provides a potential strategy to improve the catalytic performance of non-Pt-based nanocatalysts.

Keywords: PdCu nanosheet catalyst; bifunctional electrocatalysts; direct formate fuel cells; formate oxidation reaction; oxygen reduction reaction.