Cellular Localization and Distribution of TGF-β1, GDNF and PDGF-BB in the Adult Primate Central Nervous System

Neurochem Res. 2023 Aug;48(8):2406-2423. doi: 10.1007/s11064-023-03909-9. Epub 2023 Mar 28.

Abstract

The available data on the localization of transforming growth factor beta1 (TGF-β1), glial cell line-derived neurotrophic factor (GDNF), and platelet-derived growth factor-BB (PDGF-BB) in the adult primate and human central nervous system (CNS) are limited and lack comprehensive and systematic information. This study aimed to investigate the cellular localization and distribution of TGF-β1, GDNF, and PDGF-BB in the CNS of adult rhesus macaque (Macaca mulatta). Seven adult rhesus macaques were included in the study. The protein levels of TGF-β1, PDGF-BB, and GDNF in the cerebral cortex, cerebellum, hippocampus, and spinal cord were analyzed by western blotting. The expression and location of TGF-β1, PDGF-BB, and GDNF in the brain and spinal cord was examined by immunohistochemistry and immunofluorescence staining, respectively. The mRNA expression of TGF-β1, PDGF-BB, and GDNF was detected by in situ hybridization. The molecular weight of TGF-β1, PDGF-BB, and GDNF in the homogenate of spinal cord was 25 KDa, 30 KDa, and 34 KDa, respectively. Immunolabeling revealed GDNF was ubiquitously distributed in the cerebral cortex, hippocampal formation, basal nuclei, thalamus, hypothalamus, brainstem, cerebellum, and spinal cord. TGF-β1 was least distributed and found only in the medulla oblongata and spinal cord, and PDGF-BB expression was also limited and present only in the brainstem and spinal cord. Besides, TGF-β1, PDGF-BB, and GDNF were localized in the astrocytes and microglia of spinal cord and hippocampus, and their expression was mainly found in the cytoplasm and primary dendrites. The mRNA of TGF-β1, PDGF-BB, and GDNF was localized to neuronal subpopulations in the spinal cord and cerebellum. These findings suggest that TGF-β1, GDNF and PDGF-BB may be associated with neuronal survival, neural regeneration and functional recovery in the CNS of adult rhesus macaques, providing the potential insights into the development or refinement of therapies based on these factors.

Keywords: Cellular distribution; Glial cell line-derived neurotrophic factor; Platelet-derived growth factor-BB; Rhesus macaque; Transforming growth factor beta1.

MeSH terms

  • Animals
  • Becaplermin
  • Glial Cell Line-Derived Neurotrophic Factor*
  • Macaca mulatta / metabolism
  • RNA, Messenger
  • Spinal Cord / metabolism
  • Transforming Growth Factor beta1* / metabolism

Substances

  • Becaplermin
  • Glial Cell Line-Derived Neurotrophic Factor
  • RNA, Messenger
  • Transforming Growth Factor beta1