Bioconcrete-Enabled Resilient Construction: a Review

Appl Biochem Biotechnol. 2023 Mar 28. doi: 10.1007/s12010-023-04427-8. Online ahead of print.

Abstract

Concrete, the ubiquitous cementitious composite though immensely versatile, is crack-susceptible. Cracks let in deleterious substances causing durability issues. Superseding conventional crack-repair methods, the innovative application of microbially induced calcium carbonate precipitation (MICCP) stands prominent, being based on the natural phenomenon of carbonate precipitation. It is eco-friendly, self-activated, economical, and simplistic. Bacteria inside concrete get activated by contacting the environment upon the crack opening and filling the cracks with calcium carbonate-their metabolic waste. This work systematizes MICCP's intricacies and reviews state-of-the-art literature on practical technicalities in its materialization and testing. Explored are the latest advances in various aspects of MICCP, such as bacteria species, calcium sources, encapsulations, aggregates, and the techniques of bio-calcification and curing. Furthermore, methodologies for crack formation, crack observation, property analysis of healed test subject, and present techno-economic limitations are examined. The work serves as a succinct, implementation-ready, and latest review for MICCP's application, giving tailorable control over the enormous variations in this bio-mimetic technique.

Keywords: Bacteria-based crack healing; Cementitious composites; Concrete; Encapsulating material; Microbially induced calcium carbonate precipitation concrete (MICCP).

Publication types

  • Review