Modulation Effects of Repeated Transcranial Direct Current Stimulation at the Dorsolateral Prefrontal Cortex: A Pulsed Continuous Arterial Spin Labeling Study

Brain Sci. 2023 Feb 25;13(3):395. doi: 10.3390/brainsci13030395.

Abstract

Transcranial direct current stimulation (tDCS) is a promising non-invasive method to modulate brain excitability. The aim of this study was to better understand the cerebral blood flow (CBF) changes during and after repeated tDCS at the right dorsolateral prefrontal cortex (DLPFC) in healthy participants using pulsed continuous arterial spin labeling (pCASL). Elucidating CBF changes associated with repeated tDCS may shed light on the understanding of the mechanisms underlying the therapeutic effects of tDCS. tDCS was applied for three consecutive days for 20 min at 2 mA, and MRI scans were performed on day 1 and 3. During anodal tDCS, increased CBF was detected in the bilateral thalamus on day 1 and 3 (12% on day 1 and of 14% on day 3) and in the insula on day 1 (12%). After anodal tDCS on day 1, increased CBF was detected in the cerebellum and occipital lobe (11.8%), while both cathodal and sham tDCS were associated with increased CBF in the insula (11% and 10%, respectively). Moreover, anodal tDCS led to increased CBF in the lateral prefrontal cortex and midcingulate cortex in comparison to the sham. These findings suggest that tDCS can modulate the CBF and different tDCS modes may lead to different effects.

Keywords: dorsolateral prefrontal cortex (DLPFC); lateral prefrontal cortex (LPFC); pulsed continuous arterial spin labeling (pCASL); transcranial direct current stimulation (tDCS).