A Deep Learning Radiomics Nomogram to Predict Response to Neoadjuvant Chemotherapy for Locally Advanced Cervical Cancer: A Two-Center Study

Diagnostics (Basel). 2023 Mar 11;13(6):1073. doi: 10.3390/diagnostics13061073.

Abstract

Purpose: This study aimed to establish a deep learning radiomics nomogram (DLRN) based on multiparametric MR images for predicting the response to neoadjuvant chemotherapy (NACT) in patients with locally advanced cervical cancer (LACC). Methods: Patients with LACC (FIGO stage IB-IIIB) who underwent preoperative NACT were enrolled from center 1 (220 cases) and center 2 (independent external validation dataset, 65 cases). Handcrafted and deep learning-based radiomics features were extracted from T2WI, DWI and contrast-enhanced (CE)-T1WI, and radiomics signatures were built based on the optimal features. Two types of radiomics signatures and clinical features were integrated into the DLRN for prediction. The AUC, calibration curve and decision curve analysis (DCA) were employed to illustrate the performance of these models and their clinical utility. In addition, disease-free survival (DFS) was assessed by Kaplan-Meier survival curves based on the DLRN. Results: The DLRN showed favorable predictive values in differentiating responders from nonresponders to NACT with AUCs of 0.963, 0.940 and 0.910 in the three datasets, with good calibration (all p > 0.05). Furthermore, the DLRN performed better than the clinical model and handcrafted radiomics signature in all datasets (all p < 0.05) and slightly higher than the DL-based radiomics signature in the internal validation dataset (p = 0.251). DCA indicated that the DLRN has potential in clinical applications. Furthermore, the DLRN was strongly correlated with the DFS of LACC patients (HR = 0.223; p = 0.004). Conclusion: The DLRN performed well in preoperatively predicting the therapeutic response in LACC and could provide valuable information for individualized treatment.

Keywords: deep learning; locally advanced cervical cancer; neoadjuvant chemotherapy; radiomics nomogram.