Photocatalytic deactivation of sulphate reducing bacteria using visible light active CuO/TiO2 nanocomposite photocatalysts synthesized by ultrasonic processing

J Photochem Photobiol B. 2023 May:242:112698. doi: 10.1016/j.jphotobiol.2023.112698. Epub 2023 Mar 26.

Abstract

Sulphate-reducing bacteria wreaks havoc to oil pipelines, as it is an active agent for scale formation in the oil production tubing, and plugging of reservoir rock around the oil wells, and this leads to the degradation of oil quality. In this work, we synthesized copper oxide/titanium dioxide nanocomposite photocatalysts with three different mass contents of copper oxide (10%, 20% and 30%) and used them as an effective photo-catalyst in the process of photo-catalytic deactivation of sulphate-reducing bacteria. The anchoring of copper oxide on titanium dioxide brought about the following positive attributes in copper oxide/titanium dioxide nanocomposite pertained to the photo-catalyst: (i) the material transformed to visible light active with the potential to harness the more efficient visible spectral region of the solar radiation, (ii) increased surface area on the photo-catalyst enhanced the number of active reaction sites in the material, and (iii) efficiently retarded the undesired photo-generated electron hole recombination to promote the photo-catalytic activity. Although, the photo-catalyst effective under both UV and visible light, the deactivation was found to be higher in visible radiation, particularly the nanocomposite with 20%- copper oxide on titanium dioxide showed the highest photocatalytic degradation with of Sulphate-reducing bacteria with a decay constant as high as 1.38 min -1 and the total depletion time as low as 8 min. It was confirmed that the bacterial deactivation was neither due to the bactericidal effect of the nanocomposite nor due to the light mediated deactivation.

Keywords: And visible light active photo-catalysts; Nanocomposites; Photo-catalysis, Sulphate-reducing bacteria; Ultrasonic processing.

MeSH terms

  • Bacteria
  • Catalysis
  • Copper*
  • Light
  • Nanocomposites*
  • Oxides
  • Sulfates
  • Titanium
  • Ultrasonics

Substances

  • titanium dioxide
  • cupric oxide
  • cuprous oxide
  • Copper
  • Titanium
  • Oxides
  • Sulfates