Effects of Isaria cicadae on growth, gut microbiota, and metabolome of Larimichthys crocea

Fish Shellfish Immunol. 2023 May:136:108719. doi: 10.1016/j.fsi.2023.108719. Epub 2023 Mar 31.

Abstract

The large yellow croaker (Larimichthys crocea) is the most productive mariculture fish in China, and its aquaculture scale is expanding along the southeastern coast of China, but that development is causing environmental damage by increasing the use of antibiotics and other chemicals. How to improve fish immunity through non-antibiotic substances is still a problem facing aquaculture industry. At present, the experiments have shown that Isaria cicadae spent substrate (IC) can improve the growth performance and immunity of Oreochromis niloticus. Therefore, I. cicadae may be a natural alternative to antibiotic for aquaculture. In order to study the effects of IC on growth performance, serum biochemical indices, intestinal microbiota, and intestinal metabolism of large yellow croakers, the fish were divided into three groups with three replicates in each group. Basal diet, basal diet with 2% and 6% IC supplementation (IC2 and IC6 groups), respectively. The results showed that weight gain rate (WG) and specific growth rate (SGR) of large yellow croaker significantly increased (P < 0.05) in IC6 group. The content of triglyceride (TG), low density lipoprotein cholesterol (LDL-C), total protein (TP) and albumin (ALB) increased significantly (P < 0.05), and total cholesterol (T-CHO) decreased significantly (P < 0.05) in IC2 group. Compared to IC0 group, the activity of malondialdehyde (MDA) , superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) increased significantly (P < 0.05) in IC2 group, the activity of total antioxidant capacity (T-AOC) and GSH-Px increased significantly (P < 0.05) in IC6 group, and the activity of lysozyme (LZM) increased significantly in IC2 and IC6 groups. The addition of IC in the diets significantly increased the diversity of the microbial community in the intestine of large yellow croaker (P < 0.05), significantly improved the relative abundance of Acidobacteriota (P < 0.05) at the phylum level, and reduced the relative abundance of Bacteroidota, Desulfobacterota, and Synergistota (P < 0.05). At the genus level, the relative abundance of Bacteroides, Cetobacterium and Mycoplasma, which are dominant bacteria in fish gut, significantly increased (P < 0.05). The relative abundance of Ruminofilibacter, Desulfomicrobium, DMER64, Syntrophomonas, Hydrogenophaga, and Aminobacterium reduced significantly (P < 0.05). Among them, Ruminofilibacter, DMER64, Syntrophomonas and Hydrogenophaga are bacteria that can participate in the hydrolysis and acidification of organic matter, while DMER64 is the hydrogen carrier. The intestinal metabolome analysis showed that IC could improve metabolic composition and function, which was related to host immunity and metabolism. In conclusion, I. cicadae can improve the growth performance, regulate the lipid metabolism and immune and antioxidant capacity of large yellow croakers by regulating intestinal microbiota and intestinal metabolism. This study provides a reference for the application of IC in aquaculture.

Keywords: Antioxidant and immunity; Growth performance; Gut microbiota; Isaria cicadae; Large yellow croaker; Metabolism.

MeSH terms

  • Animals
  • Antioxidants / metabolism
  • Cichlids* / metabolism
  • Diet / veterinary
  • Gastrointestinal Microbiome*
  • Metabolome

Substances

  • Antioxidants

Supplementary concepts

  • Cordyceps cicadae