Phenylalanine transport at the human blood-brain barrier. Studies with isolated human brain capillaries

J Biol Chem. 1986 May 15;261(14):6536-41.

Abstract

The exquisite sensitivity of brain amino acid availability to changes in plasma amino acid composition arises from the uniquely high affinity (low Km) of blood-brain barrier transport sites as compared to cell membrane transport systems in nonbrain tissues. The extension of this paradigm from rats to man assumes that the Km of blood-brain barrier amino acid transport in the human is low as in the rat. This hypothesis is tested in the present studies wherein isolated human brain capillaries are used as a model system for the human blood-brain barrier. Capillaries were obtained from autopsy brain between 20 and 45 h after death and were isolated in high yield and free of adjoining brain tissue. [3H]Phenylalanine transport into the isolated human, rabbit, or rat brain capillary was characterized by two saturable transport systems and a nonsaturable component. The Km values of phenylalanine transport into brain capillaries via the two saturable systems averaged 0.26 +/- 0.08 and 22.3 +/- 7.1 microM for five human subjects. These studies provide the first evidence for a very high affinity (Km = 0.26 microM) neutral amino acid transport system at the blood-brain barrier, and it is hypothesized that this system is selectively localized to the brain side of the blood-brain barrier. The results also show that the transport Km values for phenylalanine transport are virtually identical at both the rat and human blood-brain barrier.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Aged
  • Animals
  • Biological Transport, Active
  • Blood-Brain Barrier*
  • Capillaries / metabolism
  • Cerebrovascular Circulation*
  • Female
  • Humans
  • Kinetics
  • Male
  • Mathematics
  • Middle Aged
  • Phenylalanine / metabolism*
  • Rabbits
  • Tyrosine / metabolism

Substances

  • Tyrosine
  • Phenylalanine