In this study, a dietary fiber extracted from sweet potato stems (Ipomoea batatas, PS) was evaluated for its ability to improve the quality of vegetable patty analogues. A patty analogues containing 0-50 wt% dietary fiber were prepared to analyze the utilized dietary fiber's performance. To evaluate the manufactured patty analogues, texture profile analysis, color analysis, emulsion stability, and microstructural analysis were conducted. As the PS increased, the hardness decreased, while the total expressible fluids tended to increase. The color analysis revealed that the a* value, which represents red, declined as the PS content increased, and heterogeneous colors showed at least 40 wt% of PS. According to the microstructural analysis, PS is a structure in which massive fiber bundles are integrated between textured vegetable protein networks, which is believed to have given the patty analogue soft characteristics. The findings of this study can serve as a foundation for future research into the application of carbohydrates to plant-based meat analogues.
Supplementary information: The online version contains supplementary material available at 10.1007/s10068-022-01211-y.
Keywords: Plant-based patty analogue; Sweet potato vines fiber; Texture profile analysis; Textured vegetable protein.
© The Korean Society of Food Science and Technology 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.