Facile Hydrogenation of Furfural by MOF-Derived Graphitic Carbon Wrapped FeCo Bimetallic Catalysts

Chem Asian J. 2023 Jun 1;18(11):e202201254. doi: 10.1002/asia.202201254. Epub 2023 May 5.

Abstract

A catalytic system for selective transformation of furfural into biofuel is highly desirable. However, selective hydrogenation of the C=O group over the furan ring of furfural to produce ether in one step is challenging. Here, we report the preparation of a series of magnetically recoverable FeCo@GC nano-alloys (37-40 nm). Fe3 O4 (3-5 nm) and MOF-71 (Co), used as the Co and C source, were mixed together in a range of Fe/Co ratios, and then encapsulated in a graphitic carbon (GC) shell to prepare such alloys. STEM-HAADF shows the darker core made of FeCo and the shell of graphitic carbon. Furfural is hydrogenated to produce >99% isopropyl furfuryl ether in isopropanol with >99% conversion at 170 °C under 40 bars of H2 , whereas n-chain alcohol, such as ethanol, produces corresponding ethyl levulinate in 93%. The synergistic effect due to the charge transfer from Fe to Co leads to higher reactivity of FeCo@GC. The catalyst, which can be separated from the reaction medium using a simple magnet without significant damage to the surface or composition, retained its reactivity and selectivity for up to four consecutive cycles.

Keywords: MOFs; bimetallic nanoparticles; furfural; hydrogenation; magnetic nanoparticles; nano-alloys.